Rademacher penalties and structural risk minimization

نویسنده

  • Vladimir Koltchinskii
چکیده

We suggest a penalty function to be used in various problems of structural risk minimization. This penalty is data dependent and is based on the sup-norm of the so called Rademacher process indexed by the underlying class of functions (sets). The standard complexity penalties, used in learning problems and based on the VCdimensions of the classes, are conservative upper bounds (in a probabilistic sense, uniformly over the set of all underlying distributions) for the penalty we suggest. Thus, for a particular distribution of training examples one can expect better performance of learning algorithms with the data-driven Rademacher penalties. We obtain oracle inequalities for the theoretical risk of estimators, obtained by structural minimization of the empirical risk with Rademacher penalties. The inequalities imply some form of optimality of the empirical risk minimizers. We also suggest an iterative approach to structural risk minimization with Rademacher penalties, in which the hierarchy of classes is not given in advance, but is determined in the data-driven iterative process of risk minimization. We prove probabilistic oracle inequalities for the theoretical risk of the estimators based on this approach as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Risk Minimization and Rademacher Complexity for Regression

The Structural Risk Minimization principle allows estimating the generalization ability of a learned hypothesis by measuring the complexity of the entire hypothesis class. Two of the most recent and effective complexity measures are the Rademacher Complexity and the Maximal Discrepancy, which have been applied to the derivation of generalization bounds for kernel classifiers. In this work, we e...

متن کامل

Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems

A number of problems in nonparametric statistics and learning theory can be formulated as penalized empirical risk minimization over large function classes with penalties depending on the complexity of the functions (decision rules) involved in the problem. The goal of mathematical analysis of such procedures is to prove ”oracle inequalities” describing optimality properties of penalized empiri...

متن کامل

Medallion Lecture Local Rademacher Complexities and Oracle Inequalities in Risk Minimization

Let F be a class of measurable functions f :S 7→ [0,1] defined on a probability space (S,A, P ). Given a sample (X1, . . . ,Xn) of i.i.d. random variables taking values in S with common distribution P , let Pn denote the empirical measure based on (X1, . . . ,Xn). We study an empirical risk minimization problem Pnf →min, f ∈ F . Given a solution f̂n of this problem, the goal is to obtain very ge...

متن کامل

Structural Return Maximization for Reinforcement Learning

Batch Reinforcement Learning (RL) algorithms attempt to choose a policy from a designer-provided class of policies given a fixed set of training data. Choosing the policy which maximizes an estimate of return often leads to over-fitting when only limited data is available, due to the size of the policy class in relation to the amount of data available. In this work, we focus on learning policy ...

متن کامل

Foundations of Coupled Nonlinear Dimensionality Reduction

In this paper we introduce and analyze the learning scenario of coupled nonlinear dimensionality reduction, which combines two major steps of machine learning pipeline: projection onto a manifold and subsequent supervised learning. First, we present new generalization bounds for this scenario and, second, we introduce an algorithm that follows from these bounds. The generalization error bound i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2001